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ABSTRACT

There are many flows of practical importance where both Tollmien-
Schlichting waves and Taylor—G;rtler vortices are possible causes of tran—
sition to turbulence. 1In this paper, the effect of fully nonlinear Taylor-
G;rtler vortices on the growth of small amplitude Tollmien-Schlichting waves
is 1investigated. The basic state considered is the fully developed flow
between concentric cylinders driven by an azimuthal pressure gradient. It is
hoped that an investigation of this problem will shed light on the more com-
plicated external boundary layer problem where again both modes of instability
exist in the presence of concave curvature. The type of Tollmien-Schlichting
waves considered have the asymptotic structure of lower branch modes of plane
Poisseulle flow. Whilst instabilities at lower Reynolds number are possible,
the latter modes are simpler to analyze and more relevant to the boundary
layer problem. The effect of fully nonlinear Taylor—Ggrtler vortices on both
two~dimensional and three-dimensional waves is determined. It is shown that,
whilst the maximum growth as a function of frequency is not greatly affected,

there is a large destabilizing effect over a large range of frequencies.
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1. INTRODUCTION

In laminar boundary-layer flows over a surface, such as a wing, shear-
flow instabilities in the form of Tollmien-Schlichting waves can occur. These
waves are the subject of much theoretical and experimental interest since it
is thought that they cause transition to turbulence. When the flow is over a
curved surface, centrifugal instabilities such as Taylor or G;rtler vortices
may also be present. These may interfere destructively with the Tollmien-
Schlichting waves and thereby delay transition. Alternatively, by making the
flow three-dimensional, they could play an essential part in the process of
transition. The interaction of these two types of instabilities is therefore
of some theoretical importance and has practical applications in the develop-
ment of laminar-flow wings.

Hall and Bennett (1986) showed that when Tollmien-Schlichting waves
travel past a curved boundary, an unstable Stokes-layer forms on the wall, and
it was suggested there that the growth of longitudinal vortices in this
Stokes~layer could destroy the Tollmien-Schlichting waves. In this paper, we
consider the opposite problem, namely the stability of a Déan (1928) type
Taylor vortex in a channel to small amplitude travelling waves. By comparing
our results with the stability analysis of a channel flow without any vortex
motion, we hope to be able to tell whether the presence of the vortices
hinders or enhances the growth of the Tollmien-Schlichting waves. A related
problem was studied by Nayfeh (1981) in which Gortler vortices were allowed
to interact with oblique Tollmien—-Schlichting waves. There the Gortler vortex
was determined by solving the parallel flow linear instability equations and
had 1its amplitude assigned arbitrarily. Such a procedure could lead to

incorrect results because Hall (1982a, 1983) has shown that nonparallel



effects cannot be ignored 1in the linear Ggrtler instability problem.
Moreover, a finite amplitude Ggrtler vortex has its amplitude determined by
the G;rtler number and cannot be specified arbitrarily. Furthermore, in the
only case where a nonparallel theory of nonlinear G;rtler vortices has been
given (Hall (1982b)), the mean flow distortion induced by the fundamental is
the same size as the fundamental. 1In such a situatioa, it is clear that the
contribution of the mean flow correction and its harmonics caannot be
ignored. The channel flow considered here does not vary in the streamwise
direction, so non—-parallel effects do not occur. Bennett (1986), however, has
shown that our analysis does apply to external non—-parallel flows, though
results for that problem will not be available until the fully nonlinear
Ggrtler problem in external flows has been solved numerically.

We confine our attention to the linear stability of the vortex motion at
high Reynolds numbers. Furthermore, we shall concentrate on the lower branch
of the neutral curve, so that the Tollmien-Schlichting waves are governed by
interactive boundary-layer theory. Thils case describes asymptotically almost
all the unstable range of high Reynolds number disturbances. 1In Section 2, we
derive the dispersion relation linking the wave-frequency to the wave-number
for waves travelling parallel to the main direction of the flow. This 1is done
in a similar manner to Smith (1979a), where the stability of unidirectional
flow was coansidered. The difference between that and the present work is that
there the basic flow varied on a cross-stream (z) distance comparable to the
long wavelength of the disturbances, whereas the z-variation in our basic flow
is governed by the shape of the Taylor vortex. Ia Sections 2 - 6{vwe consider
"square" Taylor vortices, where the 2z variation is comparable to the channel

width and therefore much faster than the streamwise (x) variation of the



waves. In Sections 3 and 4, we look at two limits of the dispersiou relation
derived in Section 2. Firstly, in Section 3, we look at what happens when the
amplitude of the Taylor vortex is small, so that the vortex is governed by the
weakly non-linear theory of Seminara (1976). Secondly, in Section 4, we find
how the scaled wave number a of the Tollmien-Schlichting waves behaves
when the scaled wave frequency Q is large. 1In Section 5, we describe the
numerical calculations needed to work out the vortex velocity field and to
find solutions of the dispersion relation. Section 6 extends these results to
the case of waves travelling obliquely to the flow. Finally, in Section 7, we

give a discussion of our results and their relevance.

2. THE DISPERSION RELATION FOR SMALL AMPLITUDE TOLLMIEN-SCHLICHTING WAVES IN
THE PRESENCE OF FULLY NONLINEAR TAYLOR-GORTLER VORTICES

We take as our basic flow the Taylor vortex that arises in the Dean
(1928) problem when incompressible fluid 1is drivean between concentric
cylinders by a constant azimuthal pressure gradient. If the radii of the
cylinders are a and a + d, then we assume that the channel is narrow, that
is § = a/d > 1, so that the Taylor vortex 1is an instability of plane

x *x %
Poiseuille flow, drivean by centrifugal forces. 1f (r ,0 , z) are

cylindrical polar coordinates, with r* = 0 correspondiang to the axes of the

cylinders, we define dimensionless coordinates (x,y,z,t) by
* * * *
x=a0 /d, y=( -a)/d, z=2 /d, t = Umt /dRe

where the Reynolds number Re = Umd/v, \Y is the viscosity, U is a typical

m



mean flow speed, and t 1is a dimensionless time., The dimensionless velocity

and pressure of the Taylor vortex, (u,v,w) and p, are given by

* 1 1 PR 2 S
2= Um(UO tu, 7Re 7’ 2Re w), P = pUm( Re + Re)’ (2.1)
and
U = 6y(1 - 3) (2.2)

is the mean flow driven by the pressure gradient.
Substituting these expressions into the Navier-Stokes equations and

ignoring terms of 0(§) and O(Redz), we get

ov , 3w _ 2 _3 .y _1 . _
W"'EE- 0, (v at)u 2 VUO Nu,
(2.3)
2 2 2 2
2 9 2 3 u_9 3 T3 u
V" -=—W'v+TU = Nv + Nw - - —
ot 0 822 az2 dydz 2 5z
where
2 2
2_9° L2 Sl
v = ——7-+ 5 N = 5 (v 5y + w az). (2.4)
3y 0z
The boundary conditions are
u=v=w=0 on y=0,1
(2.5)

and u, v, and w periodic in =z,

whilst the Taylor number T has been defined by




T = 4Re§”. (2.6)

The linear instability problem discussed by Dean (1928) can be obtained
by linearizing (2.3), so that the right hand sides vanish, and by replacing
3/at by O, If the Taylor number T 1is plotted against the wave-number
k for steady solutions of Dean”s problem, periodic in z with period 2n/k,
an open neutral curve typical of convective or centrifugal instabilities is
found. Points in (k,T) space above this neutral curve correspond to
unstable linear Taylor vortices, whilst those below represent Taylor vortices
that decay to zero when t + u . The critical point of the curve is given
by T = T. = 5161.86, k = ko = 3.951. Here we are interested in fully
nonlinear steady solutions of (2.2) - (2.6). These exist in a region above
the linear neutral curve and are obtained numerically in the manner described
in Section 5.

We now consider what happens when the Taylor vortex velocity (2.1) is
perturbed by high Réynolds number Tollmien—-Schlichting waves travelling
parallel to the x-axis. For Re >> 1, the components of velocity in (2.1)
perpendicular to the x-axis become negligible. Smith analyzed the stability
of a unidirectional flow depending on two spatial variables y and 2z near
the lower branch of the neutral curve when the perturbations vary on a slow
x length scale of O(Re1/7). In his work, the variation of the basic flow in
the cross stream direction 2z was also on a long length scale of O(Re1/7).
In this section, the basic flow varies on a relatively fast O0(l) 1lengthscale
in 2z, forced by the behavior of the Taylor vortex. There are, however, cir-
cumstances in which the 2z variation of the Taylor vortex is of 0(Re1/7),
but these occur at much higher Taylor numbers and therefore are not discussed

here.



Following Smith, then, but taking into account the different 2z scales,

we write

*
€ = Re ,x=¢ X, T=¢ Umt /d. (2.7)

The flow splits up 1into three regions, an inviscid core, and a viscous
critical layer of thickness O(sz) on each wall,

In the core, we perturb the Dean problem as follows

~ ~

Un(T,0,0) + (€2 1, €2 v, €2 WE + ...]

e
]

(2.8)

2, 4 °
—pUm(G pE+ .oo)

o
1

where TU(y,z) = U0 +u is the velocity of the mean flow and Taylor vortex,

E = h exp(i(aX - 9T)), h < 1 (2.9)

and the variables denoted by ~ are functions of y and 2z only. On sub-

stituting ioto the Navier-Stokes equations, we get

icgu+v +w =20
y 4

(2.10a-d)

>
>

b
Q
[}
<

it
i
O

>
H




with slipping conditions at the walls

v=0 at y = 0,1 (2.11)

~ ) ~ ~ ~

and u, v, w, and p are periodic in 2z, The scalings for u, v, and

p are those of Smith whilst that for w is forced by a comparison of the

last two momentum equations (2.10c¢,d). The velocities in (2.9) can now be

written in terms of the pressure

~ U

Z . =
- Pz %-]/U

b

2 A ~
(ia)” u = [Vzp—py

CIL<GI

T
Q

iav (2.12)

1
1
o
~
=]

iaw

Substituting these expressions into the first momentum equation (2.10b), we

get - ~

n p,U p,U
vip-2 XYy 22, (2.13)
U 7

The boundary conditions (2.11) together with the fact that i} vanishes at

both walls imply that

P.=p.=p =1 at y-=0,1. (2.14)

It can be shown from (2.13) and (2.14) that the core problem does not

-~

specify p uniquely, since for any solution of (2.13) and (2.14) we can add




~

on and multiply by arbitrary constants to get another solution. Thus p is
determined by the interaction between the core and the viscous layers at y =
O’II

is a solution of (2.13) and satisfies the boundary

o >
1}
©

If
conditions

$ =0 at y=0,¢é=1 at y =1, (2.15)

then it can be shown by series expansions in y and (1 - y) that p=¢

also satisfies the boundary conditions (2.14). Hence

~ ~ ~ -~

P =Pyt (py - p)¢

~

is also a solution of (2.13) and (2.14) for arbitrary constants P

and

~

Py and 1s therefore the general solution.

As we move into the lower boundary-layer, the core pressure and unper-

turbed velocity are such that
; *> ;0 + 0(y3), U+ Ao(z)y, as y =+ 0. (2.16)
Hence from (2.12) the disturbance velocities are such that
; +> Ao(z), v > -iaAOy, ;~0(y2) as y + 0. (2.17)
The displacement term Ag satisfies

2, _1 .~ =
Ao(10) Ay = 5 (p;= py) ¢yyy|0. (2.18)




The core velocities and pressure behave in a similar manner to (2.16) - (2.18)

as we move into the upper boundary layer.

In the lower critical layer, we write

* ~ ~ ~
u = Um[(ezxoY,0,0) + (e2 u, es v, €3 W)E...]

* 2., 4~ 6 ~
p =pU "[(e py+e py + «o.]E

which, ignoring terms of O(hz), leads to the equations

icu + v, +w =0
Y z

i(0 + a)\OY)u + on + )\OzYw = —iapo + ugy

i(-q + aAOY)w = “Pg1, + Yoy

= const

Py

~

Po1 = Po1 ()
with boundary conditions

u=v=w=0 on Y=0,

u > AO"; > 0, BO + pO as Y » o

;, ;, %3 BO’ and EOI periodic in =z,

(2.19a~¢)

(2.20a-c)
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The scalings of 3, ;, and SO come from matching with the core
whereas the scalings for w and BOI have been chosen as 1large as
possible. These two terms will be driven by matching with higher order terms
in the core and are not specified uniquely by (2.19) and (2.20). Equations

(2.18) differ from the linearized boundary-layer equations solved by Smith

only in that the pressures ;O and 501 are not equal here. Following
Smith, (2.19c) can be solved for W in terms of 501,
where

£ ds s

M(E) = Ai(5) | ——2——j AL(s))ds,
Eg AL7(s) =
(2.22)
e = )3y - /), gy = 112/ ??

and Ai is the Airy function that satisfies AL" = gAi, Eliminating

<

between (2.19a) and (2.18b) by differentiating (2.18b), substituting for W

from (2.21) and solving for u we get

5/3 Oz

- - ~ ~ - 1 PP

(2.23)
EM (&)

- 2Ai° (E)[W]} + BAl(g)

where the constant B 1is determined by the outer boundary condition on g

in (2.20),
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5/3 o 20z ~ MCE )

B= U™ vy ~ T Po1 o REy I
(2.24)

-]

K(gy) = [ AL(E)dE.
o

~

From matching with the core Py = Py and putting Y = 0 in (2.19b) and

using (2.23) and (2.24), we get an expression for 50 in terms of ;01

and Ajy. Substituting for Ay from (2.18) gives

p +9.p =a py, t5 (P, = Pyl -
o1, 0FoL, 0 2 M1 0" yyyy=0 (1ax0)173 K(EO)
(2.25)
2202 3P0 vy 4 At 1)
Yo X, ‘27 2EGy EoKlEy €0

The problem in the upper critical layer at y = 1 is the same as that
at y =0 with (Al (z), Al’ 51, 511, pl) instead of (Ao(z), AO’ EO’

501, ;0) in equations (2.19) to (2.24), and with (2.18) replaced by

. 2 __1.~ _°

This leads to

AL7(g,)

P +9.p,, =a"p +5 (py - Py |
llzz 1711 1 270 17 yyy'l (1ax )1/3 K(E )

A
1z 3 51

¢1 = - X:—'(§'+ 7KT(€Ij'[§1K(El) + Ai'(El)]) (2.27)

1/3

g, =-1 Q/(ak1)2/3.
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/

In the limit as 3/0z + O(Re_1 7), 501, and ;ll would tend to EO

and ;1 so that (2.25) and (2.27) would become the coupled second order
differential equations of Smith. Our equations as they stand are easier to

deal with as they are only first order differential equations in and

Po1
- b4
Pipe Integrating (2.25) once and using the periodicity condition (2.20c)

gives

Z
2 /k é Vo(z))dz,

~ 2
O0=p,0a f = e dz
0 0
VA
. R R TN CIPL N AT (E )
+ (p1 - po) %—f eO ¢ 0 il/g dz.
0 yyy (1ax ) " K(E )

~

Integrating (2.27) gives a similar equation for Py and P, involving

~ ~

&l, and on eliminating Pq and Py from thse two equations we obtain

Z Z
,  nm/k é ¥pdz, AL (£ ) R RGN

0 = e ¢ | . dz/ [ e dz
0 (iaxo)l/3K(£0) yyy'y=0

VA VA
o /k é ¥,dz, AL (5 ) ok L 9192

0
+ [ e ) |._. dz/ / e dz.
0 (iaxl)1/3x(gl) yyy'y=1 0

(2.28)

This is the dispersion relation or eigenrelation, giving « in terms of

Q for high Reynolds number, linear Tollmien—-Schlichting waves. It applies
to any unidirectional flow (U(y,z),0,0), so long as the period of the z
variation 2n [k << Re1/7. Thus the eigenrelation is also applicable to high

Reynolds number flows in pipes of finite cross—-section. Here z would

correspond to distance measured around the pipe.
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Three stages are needed to work out values of (a,Q) on the curve

given by (2.28) for the Taylor vortex case U = Uy + u;
(i) First, for a given Taylor number T we must find a steady solu-
tion of (2.2) - (2.4) and hence Tj;
(ii) Once T is known we can determine the core pressure ¢ by
solving (2.13) and (2.15);
(iii) Finally we can solve (2.28) with go, wo, 51, and ¢1 given by

(2.22), (2.25), and (2.27) and AO and Al given by

3. WEAKLY NONLINEAR THEORY

In order to find nonlinear solutions of the vortex equations (2.2) -
(2.5), we need to use a numerical method, as in Section 5. However, when the
Taylor number is only slightly greater than the critical 1linear Taylor

number T the amplitude of the vortices is small and solutions of (2.2) -

)
(2.5) are described by the weakly nonlinear theory of Seminara (1976). We now
apply our dispersion relation (2.28) to Seminara”s velocity profile. The
results we obtain indicate how the stability of the flow is affected when the
flow becomes slightly three-dimensional and will provide a useful check on the
full nonlinear calculations of Section 5. The weakly nonlinear velocity in
the streamwise direction is given by

U = U, + Au, coskz + Az(u coszkz) + 0(A3). (3.1)

0 1 20 ¥ Y22
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Here the vortex wavenumber k 1is the critical one for linear vortices, k = k.

= 3,951, and the vortex amplitude A is related to the Taylor number by

T ~ Tc 1/2
c
The velocities up, Uugg, and ug9 are given by Seminara (1976) and are
independent of =z.

The solution of the pressure equation (2.13) with boundary conditions

(2.15) is then forced to behave in a similar maanner to (3.1)
¢ = ¢, + Ap,coskz + A2(¢ + ¢,,cos2kz) + 0(A3) (3.3)
0 1 20 22 ° :

Here we are only interested in the leading order effects of the vortex on the
dispersion relation. Since the iIntegral of coskz over a period is zero, the
fundamental 0(a) terms will only appear as a product with other 0(a)
terms and so will only have an O(Az) effect. Hence we must also take into
account the mean flow correction terms u,3 and ¢20. By a similar argu-
ment the first harmonic terms 0(A2)c0s2kz will only have an 0(A3)

effect, and so are ignored here. Substituting (3.3) into (2.13) we find that

the pressure term ¢ is given by

¢O = 6y5 - 15y4 + 10y3

(3.4)
U.u u2
0720 _ 1 1

3 T”*%y%

u

5 2
“%°¢ Y

where

U.u u2 u1

_ 0720 1

¢ - e gl v ey gy
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and that the fundamental pressure term ) is governed by

¢ 2 u
Dy -k =2 Ry, 4, =0 at y=o0,1. (3.5)

(=<
2
UO U 0

If we write the skin friction at the walls as

= - 2
AO =1 | =0 = 6 + Aulcoskz + A (u20 + .e)

(3.6a,b)

_ _ 2
A, = =U | - = 6 + Avlcoskz + A (v20 + .ed),

then from (3.4) the pressure terms we need to evaluate the dispersion relation

are
¢ | =4 | = 60
=0 0 =1
yyy y yyy y
o | m2ou, -3u24e | 2o oeoc (3.7)
20 y=0 20 2°1 1 y=0 6
yyy yyy
v
5 2 1
) | =20V, - >V, +¢ |, = - 60C.
=] 20 271 1 =1 6
Oyyy ¥ yyy 7
We can define a mean value for EO’ 51 by writing
= -Qe"/6
F o C-

and substituting (3.6a) into the definition of wo, (2.25), we find after

some simplification that the integrating factor in (2.28) becomes
z
bt :
e ~ 3377-(1 - 17 4,6 coskz + 0(A%)) (3.9)
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where

G=3+—5— (EK + Ai"). (3.9b)

Also, the rest of the integrand in the eigenrelation can be written as

2
73 73 S (1 - g Fpeoska + 4k,
K(EO)(iako) (6ia) K(E)
(3.10)
u
20
15 1))
where
o= 2 A8 gy ain) 4 (3.10b)
K(g)AL"(E)
and
— 2
= 72 AL E = oveE L 1 AL — Al
9F2 =1+ AL X (K + AL7) (£ + 5 AL~ + 2 KAJ[,). (3.10¢)

Combining these results we can evaluate the part of (2.28) corresponding to

the lower boundary layer

z z
21r/k{) ¥vodzy AL (5,) 21r/k£ ¥odz,
e 173 ¢yyy|y=0dz/ f e dz
0 (a2 )" 7K (E ) 0
2
L ALTE) 60 2 M1 F1°5 3, Va0 F

1
— A+ A8 [mz (F, + 5=~ 3) - — (=~ 2)
K(E) (6ia)173 36 2 12 2 6 "3

il .6
=4y lyegmy G+ 7 - 1)/360 - cD).
yyy

Using a similar result for the other half of (2.28), we get the following
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eigenrelation
2 . 2
i) PaZk@) A M1tV F1& 3
e A i S I vl Vs
6041~ (E)
(3.11)
Il ¢
oy gtV 1PQ = - 7)/360 - 20)
yyy yyy

where we have used the result u20 + v20 = 0. The constants in (3.11) are
obtained from Seminara (1976) and by solving (3.5)
uy v
—3g— = 8.072

(u,9 |0 +v ) = 6.843

lyyy lyyyll

~2C = 26.86.

We now choose to look only at the spatial stability of the vortex motion,
that is for a given real frequency we solve (3.11) numerically to find
the wavenumber. 1If Gy the imaginary part of the wavenumber, turns out to
be positive, then the resulting waves decay downstream as x + «, whilst
if a, <0 the waves will grow exponentially. Equations (3.8), (3.9b),
(3.10b,c), and (3.11) were solved at various values of Q by Newton—-Raphson
iteration in a. Figure 1 shows oy plotted against Q for

A=20, .1, .15 corresponding to Taylor numbers of T = T 1'33Tc’ 1.76Tc.

c,
The general pattern is the same in all three cases. For the frequency less

than some critical value Qc (depending on the Taylor number), all disturb-

ances decay. At Q = Qc’ a, = 0 so that linear disturbances neither grow




_18..

nor decay. This point corresponds to the asymptotic limit of the lower branch
of the neutral curve. For Q> Qc all waves grow, and as Q> =», (ai)

decays to zero since we are tending towards the upper branch of neutral
curve. Disturbances corresponding to the upper branch occur on different
length and time scales to the lower branch disturbances, so that in an
analysis near the upper branch x and t would be scaled on different powers
of the Reynolds number to (2.7), so that however large Q is we will never
actually reach the upper branch where a, = 0. The results of Figure 1 show
that the vortices have negligible effect on the neutral frequency Qc and
that the growth rate over a large band of frequencies 1s significantly
increased. This corresponds to a destabilization of Poisseulle flow by the
vortices. We shall see that this trend is also found when the fully nonlinear

problem is solved numerically.

4. THE HIGH FREQUENCY LIMIT, Q + =

In this section we determine the asymptotic behavior of the eigenrelation

(2.28) when Q + =, We assume that Q/ Q » », which means

2/3‘)‘” as
o]

that EO and 51 +> o, This can be checked at the end of the calculation.

First we need two results giving the behavior of the Airy function, its deriv-

ative, and 1its integral for large arguments. Writing Ai(s) = Ai'"/s and
integrating by parts, we find
® ai-e) M 2a1”
g £ 3
(4.1)
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Also it is known (see e.g., Abramowitz and Stegun (1965)) that the ratio of
the Airy function to its derivative is given by

AL/AL" ~ - £1/2 as £ > w. (4.2)

Using these two results we can calculate the asymptotic behavior of each term

in (2.28). So from (2.25) using (4.1) and (4.2) we get

AOz 1

wONA—()—(l+E_377+...) as & * o,

and using (2.22) we can write this as

o~ AOZ AOza
0 XO (-iQ )1/2
Heuce the integrating factor
z
(f) Yot 1 Ao
e o o— (1 = + ooo) as E > ™ (403)
AO (_193)172
so that
2
om [k {) ¥odz IZﬂ [k, 2“
e dz ~ as £ + =, (4.4)
0 0 o 193)1;
Also from (4.1) and (4.2)
E ) ( i ) (4.5)
E(l+ see =—E l + ——————+ ) 4.5
K(EO) 503/2 0 (-1Q3)1/2
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Combining this with (4.3) gives

4
f wodz
& arGy
/3" "2 ° (4.6)
K(ao)(laxo) aAO

Substituting (4.4) and (4.6) together with similar expressions involving £,

into the dispersion relation (2.28), we obtain

) )
n? s 2 0 + L } 4.7)
@ L. 2ma L - 2ra
—177 —7
0 M—m3f 2 1 M—m3f 2
where
2n/k 2n/k
dz dz
o, = | D204 NN N £ ,1=0,1. (4.8)
iy AiZ y=1i i 9 Ai
We can now obtain an asymptotic series for a in inverse powers of 9)
from (4.7) in the form
a ~ 0191/3 - el“/4029’5/6 (4.9)

where

¢ ¢
G2+ ), C
1 1 L

._.
D]~
o

(We note here that Q + «  implies that EO’ 51 + ® as assumed earlier.)
Thus the imaginary part of a decays to zero like some constant
times 9-5/6. The actual value of this constant depends on the vortex pro-

file through the constants Cl and C2‘ We now determine these constants for

vortices governed by the weakly nonlinear theory described in Section 3. If
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the velocity is given by (3.1), we find that

ng

%-(1 - AzC) i=20,1

and 9
_or 2 M1 Moo
L]. —EE(]. + A ('7—2"_6 ))

with a similar formula for Ly but with v replacing u.

2 u% + v2

= 1001 - & {3 (1) + 12¢})

¢ 7

— W

2 2
2 u, +v
_ 20 _A 1 1
C2 = EI-(I 5 (2c + ——Tﬁf——~))

so that the asymptotic form for the growth rate is given by

2 2

2 u, +v
2/3 A 5 1 1
- lae+ g 5 —

oy~ v2 (10 7

This asymptote is plotted in Figure 1 for various values of

with the corresponding weakly nonlinear dispersion relations.

12”56,

Hence

A

(4.10)

along

The asymptotic

form (4.10) is seen to accurately predict o over a wide range of fre-

i

quencies and thus provides a useful check on the calculations of Section 3.

5. THE NUMERICAL CALCULATION OF A FINITE AMPLITUDE TAYLOR VORTEX

Here we describe how we integrated (2.3) numerically to find the fianite

amplitude Taylor vortex whose instability we wish to determine.

The method
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used is essentially that described by Rogers and Beard (1969) who investigated
numerically the classical Taylor problem driven by the motion of the inner
cylinder. Rogers and Beard solved a system similar to (2.3) by Fourier
expanding u and v 1in the 2z direction and using finite differences in the
radial direction., Later Fasel and Booz (1984) performed related calculations
using finite differences in both directions. The method of the latter authors
is apparently the most efficient at very high Taylor numbers where jet-like
structures develop along the cylinders. Here we do not perform calculatiouns
at such high Taylor numbers, so we use the method of Rogers and Beard.

Thus the velocity components in (2.3) are expanded as

un(y,t) cosknz,

=
0
—0~1 8

0 + % vn(y,k) cosknz, (5.1)

vV =V

o
w = % wn(y,t) sinknz.

Here we have anticipated the usual result that the only mean flow generated by

the vortex is in the azumuthal direction. The expansions (5.1) are then

substituted into (2.3), and the coefficients of cosknz are equated to give

an infinite sequence of coupled nonlinear differential equations for

{un} and {Vn}' Thus for example the equation for vg 1s

3t .2 =% 1o CGagve. 5.2

We obtain steady state solutions of (2.3) by integrating forward in time from
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some appropriate initial guess. At Taylor numbers close to the critical, the
initial guess can be taken to be the weakly nonlinear state described in
Section 4. At high Taylor numbers the initial guess was taken to be the
equilibrated solution from a previous calculation at a lower Taylor number.
A fully implicit scheme was used to march forward in time. Hence if

At is the time step and h the step length in the y direction we obtain a
stable scheme for At ~ 0(h). The nonlinear terms on the right hand side of
the disturbance equations were always evaluated explicitly. The number of

Fourier modes and intervals in the y direction required to achieve a solu-

T

T L]
c

order to monitor the energy in different harmonics, we followed Rogers and

tion sufficiently accurate for our purpose depends on the ratio In

Beard and defined

(5.3)

The number of axial modes required was varied until the converged values of

Eq, Fq achieved sufficieat accuracy. Similarly the step length h was

varied until Eq, Fq converged to sufficiently accurate values. For the
calculations reported here, it was found that eight axial modes and h = .0l
were sufficient to enable us to determine the dispersion relation to the

accuracy indicated in Section 7. In Figures 2 and 3, we have shown the

dependence of Eq and Fq on T for k =k, = 3.951 the most dangerous

Taylor vortex mode. We see that at sufficlently small values of {%;.- 1}
c
the results are consistent with the weakly nonlinear results which can be

derived from Seminara (1976). However the fully nonlinear solution diverges

from the asymptotic result at quite small values of {%}-— 1} so that the
c
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results predicted in Section 3 for A = .15 are beyond the range of
validity of the Taylor vortex amplitude expansion. However we see in Figure 1
that the full solution for T = 1.78 T. gives values of ai(ﬂ) qualita-
tively similar to the weakly nonlinear results for most values of the
frequency shown in that figure.

Once the Taylor vortex has been computed, the wavenumber a (R, T) can be
calculated using the procedure outlined at the end of Section 2. The
functions required in the calculation were evaluated from the series of
asymptotic expansion of A; depending on the size of the argument. The
waveflow equation (2.13) was solved by a finite difference method together
with an iteration procedure to evaluate the terms involving z derivatives. 1In
Figures 4 and 5, we have shown the functions ko(z)lxl(z), ¢yyy(0,z),
¢yyy(l,z) obtained from such a calculation at T = 11,000, We recall that at
T = Tc Ay = A = 6, ¢yyy(0,z) = uyyy(l,z) = 0 so that even at about twice the
critical Taylor number the vortices have a significant effect on the waveflow
problem. We postpone until Section 7 a discussion of the results obtained at
higher Taylor numbers. The calculation of the finite amplitude Taylor vortex
beyond T ~ 27,000 was not possible because it is apparently unstable to

another Taylor vortex mode with wave numbers 2k The mode could of course

c.
be found for T > 28,000 by solving the steady state equations, but such a

calculation was not carried out.

6. OBLIQUE WAVES

The method used to obtain the dispersion relation in Section 2 can be

extended to deal with Tollmien-Schlichting waves traveling at an angle to the
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main direction of flow of the Taylor-G;rtler vortex. In this case, the
perturbation velocities and pressure will depend on the slow Tollmien-
Schlichting cross-stream coordinate ez, as well as the relatively fast
vortex coordinate z. In the boundary layer, this forces a much larger pres-
sure gradient in the z-direction which alters the structure of the flow there.

In the core, then, the perturbation scalings (2.8) remain the same, but

(2.9) is changed to
E = h exp(i(aX + Bez - QT)) h < 1. (6.1)

This leaves the core flow problem (2.10a-d) unchanged and leads to the same
matching conditions (2.16 - 2,17). However, because of the z-dependence in
(6.1), the pressure gradient has a component in the z-direction of O(es)
in the boundary layer, as opposed to 0(86) beforehand. This then forces
the following new scalings in the boundary layer

2 * 2 4 5 6
y=¢Y, p =p Um (e Pyt € pl(z) + ¢ pz(z) + ...]E

* 2 2 4 5 2
E = Um[(e AOY,O,O) + (EUO + e ul + seey € VO + € Vl, + ses,y € WO +

3

€W, + «..)E].

1

Substituting the above into the Navier-Stokes equations and lineariziag, we

obtain the following two sets of equations



-26-

icu, + v + w =0
Oz

L+ adgDug * X% + Aoz, T Moy
i( + aAoY)wO = —inO - P, + Yoyy (6.2)
ug = Vo = Wy = 0 on Y=20
Ugs Vs Vs 7 0, Py = ;0 as Y+ =
and
iaul * Viy ¥ Y1z * iBwO =0
i(-n + oonY)u1 + onl + }‘Ozle = —iapo +ugy
i(n + a)\OY)w1 = —in1 - Pzz + Vivy (6.3)

u, > A, w, > 0 as Y » =,
Here we have ignored terms of 0(h2) and O(hz/e); the latter of the two
terms makes the extension of this work into the weakly-nonlinear region non-
trivial.

Equations (6.2) are the same as (2.10) and (2.20) with (u,v,w)

replaced by (ug,vg,wy) and (pO’pOIZ’KO) replaced by
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(o, iﬁpo + Py, 0). Hence (6.2) can be reduced to the equivalent of (2.25):
(plz + 1Bp0)z + wo(Plz + ino) = 0.

For periodic solutions we have

Z

—f Yy.dz
. 0 0771
27
p,. = -18p, (1 - — (2 ) . (6.4)
1z 07 Kk {)"’odzl
i e dz
0

By adding g-x (6.2¢c) to (6.3b), we find that (6.3) are also the same
equations as (2.10) and (2.20), but this time (ﬁ,%,%) are replaced by

(u, + B

1 a-wo,vl,wl) and (pO’pOIZ’AO)’ are replaced by

82, 18 ~
(po(1 + ;7) T2 P 18Py + Py,» Ag)e

In the case B = 0, equation (6.3) reduce to those for the two dimensional

disturbance, while (6.2) have the trivial zero solution. For the case

B # 0, we obtain the following equation instead of (2.25)

2 2
(pZz + inl)z + npo(p22 + inl) = (a” +8 )po - i8p|,
(6.5)
Ai (50)
173

2
+ AO (ia")A

0

(o) 7Kz )

Substituting for p;, from (6.4), using the definition of Ay, (2.18), the

condition for periodic solutions of (6.5) becomes
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2
g2 - L1 e

0 = (a2

where 15, Jg, and Hy are the integrals

z
i n/k é ¢0
IO = 5 7R f e dz
0
z
. 2n/k —é ¢0
J0 = + 5Tk f e dz (6.7)
0
z
1 fZﬂ/k {)"’odz AL7(E )
H, = e ¢ dz.
0 2r/k 0 yyy'0 (iako)l/3K(§0)

As in Section 2, we can obtain a similar expression to (6.6) from the boundary

Po
equations and simplifying leads to the dispersion relation

layer in the upper wall y = 1., Eliminating and ;1 between these two

Ho Hy \

+
2 2 2 2 1
aIO+B/J0 a11+B/J1

(6.8)

| —~
——

where the integrals I;, J;, and H; are defined in a similar manner to (6.7)
but involving the variables 51, Al’ etc,, corresponding to the upper
boundary layer.

It can be seen that in the case B =0 (6.8) becomes the dispersion
relation for two dimensional disturbances (2.28). In the case of a two
dimensional flow with no vortex motion, we obtain IO =1 = Jg=J =1

1/3

and Hy = H) = A17(E)/(iar) "' “K(£), so that (6.8) would reduce to
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(a2 + 52) = Ai'(g)/(im)l/3

R(E).
which 1s, of «course, the wusual eigenrelation for three dimensional
disturbances. We postpone a discussion of the numerical results we have

obtained for this eigenrelation until the next section.

7. RESULTS AND DISCUSSION

We shall concentrate our attention on the effect of longitudinal vortices
on the growth rate of Tollmien-Schlichting waves. Though there 1s some
interest in the effect of the vortices on the neutral curve for the Tollmien-
Schlichting wave, it is the effect of the vortices on the growth rates which
will be most relevant to the closely related external boundary 1layer
problem. In any case our calculations indicate that large amplitude vortices
have little effect oun the neutral configuration whilst even small amplitude
vortices significantly alter the growth rates in the unstable regime.

In Figures 6 and 7, we have shown the growth rate and wavenumber of two-
dimensional Tollmien-Schlichting waves at different values of the Taylor
number T. The results shown correspond to k = kc = 3,951 the critical
wavenumber of linear theory for Taylor—Ggrtler vortices., The vortices have
little effect on the neutral frequency and the size of the largest amplifi-
cation rate. We see in Figure 6 at most frequencies the amplification rate
increases monotonically with T. For T > 27,000 the Taylor vortex could not
be calculated because it was apparently unstable to a vortex with twice the

spanwise wavenumber of the most dangerous mode of linear theory. The

frequency corresponding to the maximum growth rate increases with T.
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Moreover, the growth rates beyond the maximum are significantly increased
for Q less than about 100, This result is of particular importance to the
control of external boundary layers if a similar result holds for such
flows. Certainly the known similarities between the lower branch structures
for Poisseuille flow and Blasius flow make that 1likely, but there are
difficulties in applying the theory to external flows. The major difficulty
is surprisingly not the effect of boundary layer growth which can be taken
care of as in Smith (1979b) but the lack of a nonlinear theory for G;rtler
vortices in growing boundary layers. Thus, though our approach of Section 3
is readily applied to external flows, the absence of any knowledge of even
weakly nonlinear G;rtler vortices at 0(l) wavenumbers prevents us from
completing such an investigation,

For external flows, the local Tollmien-Schlichting frequency increases as
the wave travels downstream and the growth rate adjusts locally. Thus the
total growth of the disturbance can be found by integrating the growth rate in
the streamwise direction. 1In this context the increased growth rates shown in
Figure 6 to the right of the maximum are possibly significant. As a measure
of the destabilization produced by the vortices, we can calculate the area
between the different curves and the di = 0 axis for 20 < Q < 100. Such a
calculation shows that for T > 11,000 the area is at least 30% greater than
that for Poisseulle flow. Thus for external flows which can support
Ggrtler vortices it 1s possible that their presence might cause the premature
growth of Tollmien-Schlichting waves.

We further note that Figure 6 shows that the dependence of o, on
Q becomes increasingly oscillatory when T increases. We have no physical

explanation of why that should be the case. The effect of finite amplitude
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vortices on the Tollmien-Schlicting wavenumber is shown in Figure 7. The
wavenumber increases monotonically with T, but the rate of increase is very
small between T = 19000 and T = 27000,

In Figures 8 and 9, we have shown how the oblique Tollmien-Schlichting
waves discussed in Section 6 respond to the presence of longitudinal vortices
at T = 11000. The results are similar to those shown in Figure 4 and again
suggest that longtitudinal vortices with k = kc can significantly
destabilize Tollmien-Schlichting waves.

We should note that for the channel problem Tollmien-Schlichting
instabilities might be expected to occur first at finite Reynolds numbers.
For external flows this is also possible, but there it seems more natural to
make a high Reynolds number approximation since there would not be a boundary
layer unless the Reynolds number were large. Thus it might be argued for
external flows that the most significant linear instability calculation 1is one
which calculates the amplification rates between the upper and lower branches
of the neutral curve. ‘Since the motivation for our calculation was to shed
light on the possible effects of longitudinal vortices on Tollmien-Schlichting
waves 1n boundary layers, we feel that a large Reynolds number assumption is
sensible., We note however that at finite Reynolds the normal and spanwise
velocity components of the longitudinal vortex are no longer negligible and
the z~dependence of the vortex does not become parametric in any region of the
flow. Thus at finite Reynolds number the computations required would be
significantly larger than those discussed here.

Our aim 1in this work has been to find the effect of finite amplitude
longitudinal vortex structures on the growth of infinitesimal Tollmien-

Schlichting waves in curved channel flows. We have ignored the possibility
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that the vortices become unstable to time-dependent nonaxisymmetric vortex
modes of the type which lead to the onset of wavy vortex flows in the Taylor
problem. We note that Hall (1982b) has shown that such disturbances occur in
external flows over curved walls so this possible mechanism for the onset of a
time-periodic secondary 1instability should not be ignored. However, if the
latter mode does indeed occur in curved channel flows, the question of whether
it or Tollmien-Schlichting waves are the cause of the secondary instability of

Taylor—-Gortler vortices can only be answered by a nonlinear analysis.
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CAPTIONS
The growth rates predicted by the weakly nonlinear theory and the
corresponding asymptotic results for larger values of Q . The
full numerical solution for T = 8800 is also shown.

The functions El’ E2, E3, E4 at different Taylor numbers.

The functions FO’ Fl’ F2, F3, F4 at different Taylor numbers.

The shear stresses AO and kl as functions of z for T = 11,000,

k = 3.951,

The functions - 1,z) for T = 11,000, k = 3.951.
e functlons #yyy (=2, ¢yyy( »2) ’

The wavenumber ar as a function of § for several values of

TE with B = 0.

The growth rate a, as a function of Q for several values of T

with B8 = 0.

The wavenumber o, as a function of @ for T = 0, 11000 with

B = 2.

The growth rate o as a function of @ for T = 0, 11,000 with

i
B = 2,
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